In the verge of coronavirus pandemic, we are providing FREE access to our entire Online Curriculum to ensure Learning Doesn't STOP!

(C)   ERRORS AND APPROXIMATIONS

We can use differentials to calculate small changes in the dependent variable of a function corresponding to small changes in the independent variable. The theory behind it is quite simple: From the chapter on differentiation, we know that

\[\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \frac{{dy}}{{dx}} = f'\left( x \right)\]

For small \(\Delta x,\) we can therefore approximate \(\Delta y\,{\rm{as}}\,f'\left( x \right)\Delta x.\)  This is all there is to it!

Suppose we have to calculate (4.016)2.

We let \(y = {x^2} \cdot \,{x_0} = 4\,\,\,{\rm{and}}\,\,{y_0} = 169\)

\[\begin{align} \qquad\quad y' & = 2x,\,\,\Delta x = 0.016\\\\ \Rightarrow \qquad \Delta y & = f'\left( x \right) \cdot \Delta x\\\\ \qquad\qquad & = {\left. {2x} \right|_{{x_0} = 4}} \times 0.016\\\\  \qquad\qquad & = {\rm{ }}8{\rm{ }} \times {\rm{ }}0.016\\\\ \qquad\qquad & = {\rm{ }}0.128\\\\ \quad\Rightarrow \qquad \;\; y & = {y_0} + \Delta y  = 16.128\end{align}\]

Example – 35

Find the value of \({\left( {8.01} \right)^{4/3}} + {\left( {8.01} \right)^2}\)

Solution: Let \(y = f\left( x \right) = {x^{4/3}} + {x^2}\)

Let \({x_0} = 8\,\,\,{\rm{so}}\,\,{\rm{that}}\,\,{y_0} = 16 + 64 = 80\)

\[\begin{align} \qquad\;\;\Delta x & = 0.01\\\\ \Rightarrow \qquad \Delta y & = {\left. {f'\left( x \right)} \right|_{x = {x_0}}} \times \Delta x\\\\ \qquad\qquad & \;{\left. {  = \left( {\frac{4}{3}{x^{1/3}} + 2x} \right)} \right|_{{x_0} = 8}} \times \Delta x\\\\ \qquad\qquad & \; = \left( {\frac{8}{3} + 16} \right) \times 0.01\\\\   \qquad\qquad & \; = \frac{{0.56}}{3}\\\\ \qquad\qquad & \; = 0.1867\\\\ \Rightarrow \qquad \;\,  {y_0} & \; = {y_0} + \Delta y\\\\ \qquad\qquad & \; = 80.1867\end{align}\]

TRY YOURSELF - V

Q. 1   Use the appropriate mean value theorem to show that the square roots of two successvie natural numbers greater thatn Ndiffer by less than \(\begin{align}\frac{1}{{2N}}\end{align}\).

Q. 2   Use LVMT to show that

 (a) \(\begin{align}\frac{{b - a}}{b} < \ln \frac{b}{a} < \frac{{b - a}}{a} \qquad {\text{when}}\; a < a < b\end{align}\)

 (b) \(\begin{align}{\tan ^{ - 1}}{x_2} - {\tan ^{ - 1}}{x_1} < {x_2} - {x_1} \qquad {\text{when}}\; {x_2} > {x_1}\end{align}\)

Q. 3   If \(2a + 3b + 6c = 0,\) can we say that \(a{x^2} + bx + c = 0\) will have at least one real root in (0, 1)

Q. 4   Find the approximate value of \(\begin{align}f\left( x \right) = {\left( {\frac{{2 - x}}{{2 + x}}} \right)^{1/5}} \qquad {\text{at}}\;x = 0.15\end{align}\)

Q. 5   If \(f\left( x \right)\;{\rm{and}}\;g\left( x \right)\) are differentiable functions for \(0 \le x \le 1\) such that \(f\left( 0 \right) = 2,g\left( 0 \right) = 0,\,\,f\left( 1 \right) = 6,\,\,g\left( 1 \right) = 2,\) show that there exists c satisfying \(0 < c < 1\;{\rm{and}}\;f'\left( c \right) = 2g'\left( c \right)\)

Download SOLVED Practice Questions of Errors and Approximations for FREE
Applications of Derivatives
grade 11 | Questions Set 1
Applications of Derivatives
grade 11 | Answers Set 1
Applications of Derivatives
grade 11 | Questions Set 2
Applications of Derivatives
grade 11 | Answers Set 2