from a handpicked tutor in LIVE 1-to-1 classes
Find the perpendicular distance from the origin to the line joining the points (cosθ, sinθ) and (cosΦ, sinΦ)
Solution:
The equation of the line joining the points (cosθ, sinθ) and (cosΦ, sinΦ) is given by
(y - sinθ)/(x - cosθ) = (sinΦ- sinθ)/(cosΦ - cosθ)
y - sinθ = (sinΦ - sinθ)/(cosΦ - cosθ) × (x - cosθ)
y (cosΦ - cosθ) - sinθ (cosΦ - cosθ) = x (sinΦ - sinθ) - cosθ (sinΦ - sinθ)
-x (sinΦ - sinθ) + y (cosΦ - cosθ) + cosθ sinΦ - cosθ sinθ - sinθ cosΦ + sinθ cosθ = 0
-x (sinΦ - sinθ) + y (cosΦ - cosθ) + cosθ sinΦ - sinθ cosΦ = 0
-x (sinΦ - sinθ) + y (cosΦ - cosθ) + sin (Φ - θ) = 0
Ax + By + C = 0 , where A = sinθ - sinΦ, B = cosΦ - cosθ and C = sin(Φ - θ)
It is known that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x\(_1\), y\(_1\)) is given by
d = |Ax\(_1\) + By\(_1\) + C|/√A² + B²
Therefore, the perpendicular distance (d) of the given line from point (x1, y1) = (0, 0) is
d = |(sinΦ - sinθ)(0) + (cosΦ - cosθ)(0) + sin(Φ - θ)|/√(sinθ - sinΦ)² + (cosΦ - cosθ)²
= |sin(Φ - θ)|/√(sin² Φ + sin² θ - 2 sinθ sin Φ + cos² Φ + cos² θ - 2 cosΦ cosθ)
= |sin(Φ - θ)|/√(sin² Φ + cos² Φ) + (sin² θ + cos² θ) - 2 (sinθ sin Φ + cosΦ cosθ)
= |sin(Φ - θ)|/√1 + 1 - 2 (cos (Φ - θ))
= |sin(Φ - θ)|/√2 (1 - cos (Φ - θ))
= |sin(Φ - θ)|/√2 (2 sin² (Φ - θ)/2)
= |sin(Φ - θ)|/|2 sin (Φ - θ)/2|
We know that sin A = 2 (cos A/2 sin A/2)
Then,
= |2 (cos(Φ - θ)/2 sin(Φ - θ)/2)|/|2 sin (Φ - θ)/2|
= |cos(Φ - θ)/2|
NCERT Solutions Class 11 Maths Chapter 10 Exercise ME Question 5
Find the perpendicular distance from the origin to the line joining the points (cosθ, sinθ) and (cosΦ, sinΦ)
Summary:
The perpendicular distance from the origin to the line joining the points (cosθ, sinθ) and (cosΦ, sinΦ) is |cos(Φ - θ)/2|
visual curriculum