Find dy/dx. x = t/8 + t , y = 8 + t
Solution:
x = t/8 + t
y = 8 + t
Here x and y are the parametric functions with the parameter t.
Hence we differentiate the functions as dy/dx = dy/dt . dt/dx
dx/dt = d( t/8 + t) / dt = 1/8 + 1 = 9/8
dy/dt = d(8 + t) / dt = 1
dy/dx = (dy/dt) / dx/dt= 1/(9/8)
= 8/9
Let us take another example where
x = t2 + 2t and y = t3 - 3t
dx/dt = 2t + 2 = 2(t + 1)
dy/dt = 3t2 - 3 = 3(t2 - 1)
dy/dx = (dy/dt) / dx/dt = 3(t2 - 1) / 2(t + 1)= (3(t + 1)(t - 1)) / 2(t+1)
= (3/2)(t - 1)
Find dy/dx. x = t/8 + t , y = 8 + t
Summary:
dy/dx = 8/9 if x = t/8 + t , y = 8 + t.
Math worksheets and
visual curriculum
visual curriculum