Find dy/dx. x = ∛t, y = 4 - t
Solution:
We apply differentiation of parametric functions as x = f(t) and y = g(t)
Let us find dy/dx by finding dy/dt and dx/dt
dy/dx = dy/dt . dt/dx
x = ∛t= \(t^{\frac{1}{3}}\)
y = 4 - t
\(\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\frac{\mathrm{d} y}{\mathrm{d} t}}{\frac{\mathrm{d} x}{\mathrm{d} t}}\)
\(\frac{\mathrm{d} y}{\mathrm{d} t} = 0 - \frac{\mathrm{d} t}{\mathrm{d} t}\) = -1
\(\frac{\mathrm{d}x }{\mathrm{d} t} = \frac{1}{3}t^{\frac{1}{3}-1}\)
\(\frac{\mathrm{d}x }{\mathrm{d} t} = \frac{1}{3}t^{\frac{2}{3}}\)
Now we know:
\(\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\frac{\mathrm{d} y}{\mathrm{d} t}}{\frac{\mathrm{d} x}{\mathrm{d} t}}\)
\(\frac{\mathrm{d} y}{\mathrm{d} x} =\frac{-1}{\frac{1}{3}t^{\frac{2}{3}}}\)
dy/dx =-3/∛t2
Find dy/dx. x = ∛t, y = 4 - t
Summary:
dy/dx =-3/∛t2 when x = ∛t, and y = 4 - t
visual curriculum