Find the area of the region bounded by the hyperbola 9x2 - 4y2 = 36 and the line x = 3
Solution:
Given, the equation of hyperbola is 9x2 - 4y2 = 36
Given, the equation of line is x = 3.
We have to find the area of the region bounded by the given hyperbola and the line.
The standard form of the hyperbola is \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\)
Where, x is the major axis and y is the minor axis.
Converting the given hyperbola equation to standard form,
Dividing by 36 on both sides,
9x2 - 4y2 = 36 becomes x2/4 - y2/9 = 1
The vertex of the hyperbola is (±a, 0) when the major axis is the x-axis.
Here, a = ±2, b = ±3
On sketching the graph of the hyperbola,
The hyperbola is reflected about the x-axis so the area below equals the area above.
On rewriting the given equation of the hyperbola in terms of y,
9x2 - 36 = 4y2
4y2 = 9(x2 - 4)
y2 = (9/4)(x2 - 4)
Taking square root,
y = (3/2)(√x2 - 4)
Thus, the total area is double of the area of the region from x = 2 to x = 3.
Area = \(2\times \int_{2}^{3}\frac{3}{2}\sqrt{x^{2}-4}\, dx\)
Area = \(2\times \frac{3}{2}\int_{2}^{3}\sqrt{x^{2}-4}\, dx\)
Area = \(3\int_{2}^{3}\sqrt{x^{2}-4}\, dx\)
Using trigonometric substitution,
x = 2 sec(w)
dx = 2 sec(w) tan(w) dw
So, x2 = 4sec2(w)
By using trigonometric identity,
sec2x - tan2x = 1
sec2x - 1 = tan2x
x2 - 4 = 4sec2(w) - 4 = 4(sec2(w) - 1)
x2 - 4 = 4 tan2(w)
On integrating,
\(\int \sqrt{x^{2}-4}\, dx=\int \sqrt{4tan^{2}(w)}(2sec(w)tan(w))dw\\=\int 2tan(w)(2sec(w)tan(w))dw\\=\int 4sec(w)tan^{2}(w)dw\)
On integrating by parts,
Let u = 4 tan(w)
du = 4 sec2(w) dw
Let v = sec(w)
dv = sec(w) tan(w) dw
\(\int 4sec(w)tan^{2}(w)dw=4sec(w)tan(w)-\int4sec(w)sec^{2}(w)dw\\\\=4sec(w)tan(w)-\int4sec(w)(tan^{2}(w)+1)dw\\\\=4sec(w)tan(w)-\int4sec(w)tan^{2}(w)dw-\int4sec(w)dw\\\int 4sec(w)tan^{2}(w)dw+\int4sec(w)tan^{2}(w)dw\\=4sec(w)tan(w)-\int 4sec(w)dw\)
\(\int 8sec(w)tan^{2}(w)dw=4sec(w)tan(w)-\int 4sec(w)dw\\\int 4sec(w)tan^{2}(w)dw=2sec(w)tan(w)-\int 2sec(w)dw\)
\(\int 4sec(w)tan^{2}(w)dw=2sec(w)tan(w)-2ln(sec(w)+tan(w))\)
Now, sec(w) = x/2
tan2(w) = sec2(w) - 1 = (x/2)2 - 1
tan2(w) = (x2 - 4)/4
Taking square root,
tan(w) = (√x2 - 4)/2
So, \(\int \sqrt{x^{2}-4}=2sec(w)tan(w)-2ln(sec(w)+tan(w))\\\\=[2(\frac{x}{2})\frac{\sqrt{x^{2}-4}}{2}]-2ln[\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}]\\\\=(\frac{x}{2}\sqrt{x^{2}-4})-2ln(\frac{x+\sqrt{x^{2}-4}}{2})\)
Applying limits,
Area = \(3[(\frac{3}{2}\sqrt{(3)^{2}-4})-2ln(\frac{3+\sqrt{(3)^{2}-4}}{2})\\-((\frac{2}{2}\sqrt{(2)^{2}-4})-2ln(\frac{2+\sqrt{(2)^{2}-4}}{2}))]\\\\=3[(\frac{3\sqrt{5}}{2}-2ln\frac{3+\sqrt{5}}{2})-(0)]\\\\=\frac{9\sqrt{5}}{2}-6ln(\frac{3+\sqrt{5}}{2})\)
Therefore, area of the region is \(A=\frac{9\sqrt{5}}{2}-6ln(\frac{3+\sqrt{5}}{2})\).
Find the area of the region bounded by the hyperbola 9x2 - 4y2 = 36 and the line x = 3
Summary:
The area of the region bounded by the hyperbola 9x2 - 4y2 = 36 and the line x = 3 is \(A=\frac{9\sqrt{5}}{2}-6ln(\frac{3+\sqrt{5}}{2})\).
visual curriculum