from a handpicked tutor in LIVE 1-to-1 classes
Find the length of the curve r(t) = 3t, 3 cos(t), 3 sin(t), -3 ≤ t ≤ 3?
Solution:
Given: r(t) = 3t, 3 cos(t), 3 sin(t)
We have to compare it with
r(t) = (x, y, z)
So x = 3t, y = 3 cos(t), z = 3 sin(t)
By using the length formula
\(L=\int_{a}^{b}\sqrt{(x')^{2}+(y')^{2}+(z')^{2}}dt\)
We know that,
x = 3t, y = 3 cos(t), z = 3 sin(t)
Differentiate with respect to 't'
x’ = 3
y’ = -3 sint
z’ = 3 cost
Now substitute these values
\(L=\int_{-3}^{3}\sqrt{(3)^{2}+(-3 sint)^{2}+(3cost)^{2}}dt \\ \\L=\int_{-3}^{3}\sqrt{(3)^{2}+9sin^2{t}+9cos^2{t}}dt\\ \\L=\int_{-3}^{3}\sqrt{(3)^{2}+9(sin^2{t}+cos^2{t})}dt\\ \\L=\int_{-3}^{3}\sqrt{(3)^{2}+9}dt \\ \\L=\int_{-3}^{3}3\sqrt{2}dt \\ \\L=(3-(-3)×3\sqrt{2}\\ \\L=6× 3\sqrt{2}\\ \\L=18\sqrt{2}\)
Therefore, the length of the curve is 18√2.
Find the length of the curve r(t) = 3t, 3 cos(t), 3 sin(t) , -3 ≤ t ≤ 3?
Summary:
The length of the curve r(t) = 3t, 3 cos(t), 3 sin(t) , -3 ≤ t ≤ 3 is 18√2.
visual curriculum