For the vectors a = (3, 12) and b = (6, 9), find orth ab.
Solution:
Given, vectors a = (3, 12) and b = (6, 9)
We have to find orth ab.
Orthₐb = b - projₐb
projₐb = \(\frac{a.b}{\left | a \right |^{2}}*a\)
Now, a.b = (3, 12).(6, 9)
= 3(6) + 12(9)
= 18 + 108
a.b = 126
|a| is the modulus of vector a.
\(\left | a \right |=\sqrt{3^{2}+12^{2}}\)
\(\left | a \right |=\sqrt{9+144}\)
\(\left | a \right |=\sqrt{153}\)
\(\left | a \right |^{2}=(\sqrt{153})^{2}\)
\(\left | a \right |^{2}=153\)
projₐb = \(\frac{126}{153}.(3, 12)\)
= \(\frac{126\times 3}{153},\frac{126\times 12}{153}\)
= \(\frac{126}{51},\frac{126\times 4}{51}\)
projₐb = \(\frac{126}{51},\frac{504}{51}\)
Orthₐb = (3, 12) - \(\frac{126}{51},\frac{504}{51}\)
\(= 3-\frac{126}{51},12-\frac{504}{51}\)
= \(\frac{153 - 126}{51},\frac{612 - 504}{51}\)
= \(\frac{27}{51},\frac{108}{51}\)
Orthₐb = (9/17, 36/17)
Therefore, Orthₐb = (9/17, 36/17)
For the vectors a = (3, 12) and b = (6, 9), find orth ab.
Summary:
For the vectors a = (3, 12) and b = (6, 9), orth ab is (9/17, 36/17).
visual curriculum