If (f + g)(x) = 3x2 + 2x - 1 and g(x) = 2x - 2, what is f(x)?
Solution:
Given: (f + g)(x) = 3x2 + 2x - 1 and g(x) = 2x - 2
From the composite functions
(f + g)(x) = g(x) + f(x)
Substituting the values
3x2 + 2x - 1 = 2x - 2 + f (x)
By further calculation,
f(x) = (3x2 + 2x - 1) - (2x - 2)
So we get
f(x) = 3x2 + 2x - 1 - 2x + 2
f(x) = 3x2 + 1
Therefore, f(x) = 3x2 + 1.
If (f + g)(x) = 3x2 + 2x - 1 and g(x) = 2x - 2, what is f(x)?
Summary:
If (f + g)(x) = 3x2 + 2x - 1 and g(x) = 2x - 2, then the value of f(x) is 3x2 + 1.
Math worksheets and
visual curriculum
visual curriculum