Prove the following i. cosec2A - cot2A = tanA ii. 2sinAcos3A - 2sin3AcosA = sin4A/2
Solution:
To Prove that cosec2A - cot2A = tanA, we will use trigonometric identities.
i) Cosec2A - Cot2A = TanA
LHS = cosec2A - cot2A
⇒ 1/sin2A - cos2A/sin2A (Since, cosec x = 1/ sin x and cot x = cos x / sin x)
On taking LCM, we get
⇒ (1- cos2A)/sin2A
⇒ {1 - (1- 2sin2A)} / 2sinAcosA (Since, cos2x = 1 - 2sin2x and sin2x = 2sinxcosx)
= (1-1 + 2sin2A) / 2sinAcosA
= 2sin2A /2sinAcosA
= sinA/cosA
= tanA
= RHS
ii) 2sinAcos3A - 2sin3AcosA = sin4A/2
LHS = 2sinAcos3A - 2sin3AcosA
On taking 2sinAcosA common, we get
2sinAcosA × (cos2A - sin2A)
=sin2A × cos2A (Since, 2sinxcosx = sin2x and cos2x - sin2x = cos2x)
On multiplying and dividing this with 2, we get
⇒(2/2) × sin2Acos2A
Substitute 2A with θ, we get
=(2/2) × sinθ cosθ
= (1/2) sin2θ (Since, 2sinxcosx = sin2x)
Therefore, (1/2) sin2(2A) = (1/2) sin4A or sin4A/2
= RHS
Hence, Proved.
Thus,(i) cosec2A - cot2A = tanA. and (ii) 2sinAcos3A - 2sin3AcosA = sin4A/2
Prove the following i. cosec2A - cot2A = tanA ii. 2sinAcos3A - 2sin3AcosA = sin4A/2
Summary:
Proof of i . cosec2A - cot2A = tanA ii. 2sinAcos3A - 2sin3AcosA = sin4A/2 is as shown above.
visual curriculum