Solve for x: 4x2 - 4a2x + (a4 - b4) = 0
Solution:
Given: Equation is 4x2 - 4a2x + (a4 - b4) = 0
For finding the values of x use the quadratic formula
x = [-b ± √(b2 - 4ac)]/2a
Here compare the given equation by ax2 + bx + c = 0 to get the values of a, b, c
So we get a = 4,b = -4a2 and c = a4 - b4
Put the values of a, b , c in the formula we get,
⇒ x = [-(-4a2) ± √((-4a2)2 - 4(4)(a4 - b4))] /2.(4)
⇒ x = [4a2 ± √(16a4 - 16a4 +16b4)]/8
⇒ x = [4a2 + √16b4]/8 and [4a2 - √16b4]/8
⇒ x = [4a2 + 4b2]/8 and [4a2 - 4b2]/8
⇒ x = 4[a2 + b2]/8 and 4[a2 - b2]/8
⇒ x = [a2 + b2]/2 and [a2 - b2]/2
Solve for x: 4x2 - 4a2x + (a4 - b4) = 0
Summary :
The value of x for 4x2 - 4a2x + (a4 - b4) = 0 are [a2 + b2]/2 and [a2 - b2]/2 for the equation 4x2 - 4a2x + (a4 - b4) = 0
Math worksheets and
visual curriculum
visual curriculum