Use logarithmic differentiation to find the derivative of the function y = xx
Solution:
\(y = x^{x}\)
Taking log on both sides
\(log y = logx^{x}\)
\(log y = xlogx\) (logxn = nlogx)
Differentiating both sides we have
\(\frac{\mathrm{d} logy}{\mathrm{d} x} = \frac{\mathrm{d} (xlogx)}{\mathrm{d} x}\)
\(\frac{1}{y}\frac{\mathrm{d} y}{\mathrm{d} x} = x\frac{\mathrm{d} logx}{\mathrm{d} x} + (logx)(\frac{\mathrm{d} x}{\mathrm{d} x})\)
\(\frac{1}{y}\frac{\mathrm{d} y}{\mathrm{d} x} = x(1/x) + logx\)
\(\frac{1}{y}\frac{\mathrm{d} y}{\mathrm{d} x} = 1 + logx\)
\(\frac{\mathrm{d} y}{\mathrm{d} x} = y(1 + logx)\)
\(\frac{\mathrm{d} y}{\mathrm{d} x} = (1 + logx)x^{x}\)
Use logarithmic differentiation to find the derivative of the function y = xx
Summary:
The derivative of the function y = xx using logarithmic definition is \((1 + logx)x^{x}\)
Math worksheets and
visual curriculum
visual curriculum