Prove the following by using the principle of mathematical induction for all n ∈ N :
1² + 3² + 5² + .... + (2n - 1)² = [n (2n - 1)(2n + 1)]/3
Solution:
Let P (n) be the given statement.
i.e., P (n) : 1² + 3² + 5² + .... + (2n - 1)² = [n (2n - 1)(2n + 1)]/3
For n = 1,
P (1) : 1² = [1 (2.1 - 1)(2.1 + 1)]/3
1 = 1.1.3/3
1 = 1, which is true.
Assume that P (k) is true for some positive integer k.
P (k) : 1² + 3² + 5² + .... + (2k - 1)² = [k (2k - 1)(2k + 1)]/3 ....(1)
We will now prove that P (k + 1) is also true.
Now, we have
1² + 3² + 5² + .... + (2(k + 1) - 1)²
= 1² + 3² + 5² + .... + (2k + 1)²
⇒ [1² + 3² + 5² + .... + (2k - 1)²] + (2k + 1)²
⇒ [k (2k - 1)(2k + 1)]/3 + (2k + 1)² ....[from (1)]
⇒ [k (2k - 1)(2k + 1) + 3(2k + 1)²]/3
⇒ (2k + 1) [k (2k - 1) + 3(2k + 1)]/3
⇒ (2k + 1) [2k² - k + 6k + 3]/3
⇒ (2k + 1) [2k² + 5k + 3]/3
⇒ (2k + 1) [2k² + 2k + 3k + 3]/3
⇒ (2k + 1) [2k (k + 1) + 3(k + 1)]/3
⇒ [(2k + 1)(k + 1)(2k + 3)]/3
⇒ (k + 1) [2 (k + 1) - 1] [2 (k + 1) + 1]/3
Thus P (k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P (n) is true for all natural numbers i.e., n ∈ N .
NCERT Solutions Class 11 Maths Chapter 4 Exercise 4.1 Question 15
Prove the following by using the principle of mathematical induction for all n ∈ N : 1² + 3² + 5² + .... + (2n - 1)² = [n (2n - 1)(2n + 1)]/3
Summary:
We have proved that 1² + 3² + 5² + .... + (2n - 1)² = [n (2n - 1)(2n + 1)]/3 by using the principle of mathematical induction for all n ∈ N.
visual curriculum