Prove the following by using the principle of mathematical induction for all n ∈ N:
1.3 + 2.3² + 3.3³ + ..... + n.3ⁿ = [(2n - 1)3ⁿ ⁺ ¹ + 3]/4
Solution:
Let P (n) be the given statement.
i.e., P (n) : 1.3 + 2.3² + 3.3³ + ..... + n.3n = [(2n - 1)3n + 1 + 3]/4
For n = 1,
P (1) : 1 . 3 = [(2 x 1 - 1) 31 + 1 + 3]/4
3 = (1.3² + 3)/4
3 = 3, which is true.
Assume that P (k) is true for some positive integer k.
i.e., 1.3 + 2.3² + 3.3³ + ..... + k.3k = [(2k - 1)3k + 1 + 3]/4 .....(1)
We will now prove that P (k + 1) is also true.
Now, we have
1.3 + 2.3² + 3.3³ + ..... + (k + 1) 3k + 1
⇒ [1.3 + 2.3² + 3.3³ + ..... + k.3k] + (k + 1) 3k + 1
⇒ [(2k - 1)3k + 1 + 3]/4 + (k + 1) 3k + 1....[from (1)]
⇒ [(2k - 1)3k + 1 + 3 + 4 (k + 1) 3k + 1]/4
⇒ {3k + 1 [(2k - 1) + 4 (k + 1)] + 3}/4
⇒ {3k + 1 [2k - 1 + 4k + 4] + 3}/4
⇒ {3k + 1 [6k + 3] + 3}/4
⇒ {3k + 1.3 [2k + 1] + 3}/4
⇒ {[2k + 2 - 1].3(k + 1) + 1 + 3}/4
⇒ {[2 (k + 1) - 1] 3(k + 1) + 1 + 3}/4
Thus, P (k + 1) is true, whenever P (k) is true.
HHence, from the principle of mathematical induction, the statement P (n) is true for all natural numbers i.e., n ∈ N .
NCERT Solutions Class 11 Maths Chapter 4 Exercise 4.1 Question 5
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.3 + 2.3² + 3.3³ + ..... + n.3ⁿ = [(2n - 1)3ⁿ ⁺ ¹ + 3]/4
Summary:
We have proved that 1.3 + 2.3² + 3.3³ + ..... + n.3ⁿ = [(2n - 1)3ⁿ ⁺ ¹ + 3]/4 by using the principle of mathematical induction for all n ∈ N.
visual curriculum