Evaluate [a + b + c]3 - a3 - b3 - c3
To find the value of [a + b + c]3 - a3 - b3 - c3 we will use algebraic identities.
Answer: [a + b + c]3 - a3 - b3 - c3 = 3 (a + b)(b + c)(c + a).
Let's look into the detailed solution.
Explanation:
Consider the algebraic identity below,
(x + y)3 = x3 + y3 + 3x2 y + 3xy2 -------------- (1)
Let x = (a + b) and y = c.
Now, substituting the values of x and y back to (1) and taking (- a3 - b3 - c3) on both the sides, we get,
[a + b + c]3 - a3 - b3 - c3 = (a + b)3 + c3 + 3(a + b)2 c + 3(a + b) c2 - a3 - b3 - c3 ---------------- (2)
Now, we know that (a + b)3 = a3 + b3 + 3a2 b + 3ab2
On further expanding (2) and by taking 3(a + b)c common, we get,
= a3 + b3 + 3a2 b + 3ab2 + c3 + 3(a + b)c × {(a + b) + c} - a3 - b3 - c3
= 3a2 b + 3ab2 + 3(a + b)c × {(a + b) + c}
Taking 3ab common, we can simplify it as,
= 3ab(a + b) + 3(a + b)c × {(a + b) + c}
= 3(a + b) × {ab + ac + c2 + bc}
= 3(a + b) × {a(b + c) + c(c + b)}
= 3(a + b)(b + c)(a + c)
So, the value of [a +b +c ]3 - a3 - b3 - c3 is 3(a + b)(b + c)(a + c).
visual curriculum