Find the area of the region under the graph of the function f on the interval [0, 9]. f(x) = 9x - x2
Solution:
Given, the function is f(x) = 9x - x2
We have to find the area of the region under the graph of the function f on the interval [0, 9].
Area = \(\int_{a}^{b}f(x)\, dx\)
So, area = \(\int_{0}^{9}(9x-x^{2})\, dx\)
= \([\frac{9}{2}x^{2}-\frac{x^{3}}{3}]_{0}^{9}\)
=\([\frac{9}{2}(9)^{2}-\frac{(9)^{3}}{3}]-[\frac{9}{2}(0)^{2}-\frac{(0)^{3}}{3}]\\=[\frac{9}{2}(81)-\frac{729}{3}-0]\\=[\frac{729}{2}-\frac{729}{3}]\\=[\frac{729(3-2)}{6}]\\=[\frac{729(1)}{6}]\\=\frac{729}{6}\)
=\(\frac{243}{2}\) square units.
Therefore, the area of the region is \(\frac{243}{2}\) square units.
Find the area of the region under the graph of the function f on the interval [0, 9]. f(x) = 9x - x2
Summary:
The area of the region under the graph of the function f on the interval [0, 9]. f(x) = 9x - x2 is \(\frac{243}{2}\) square units.
Math worksheets and
visual curriculum
visual curriculum