from a handpicked tutor in LIVE 1-to-1 classes
Find the critical numbers of the function. g(y) = (y - 2) / (y2 − 2y + 4).
Solution:
A critical point of a function of f(x), is a value x0 in the domain of f where it is not differentiable or its derivative is zero
i.e. (f ′(x0) = 0).
If f has a local maximum or minimum at c, then c is a critical number of the function f.
Given, g(y) = (y - 2) / (y2 − 2y + 4)
Taking derivative,
g'(y) = (y2 − 2y + 4)(1) - (y - 2) (2y - 2) / (y2 − 2y +4 )2
g'(y) = (y2 − 2y + 4) - (2y2 - 2y - 4y + 4) / (y2 - 2y + 4)2
On simplification,
g'(y) = (y2 - 2y + 4 - 2y2 + 6y - 4) / (y2 - 2y + 4)2
g'(y) = (-y2 + 4y ) / (y2 - 2y + 4)2
Taking out common term,
g'(y) = y(4 - y) / (y2 - 2y + 4)2
To find critical number, g'(y) = 0
y(4 - y) / (y2 - 2y + 4)2 = 0
y(4 - y) = 0
y = 0
(4 - y) = 0
y = 4
Therefore, the critical numbers are y = 0 and y = 4.
Find the critical numbers of the function. g(y) = (y - 2) / (y2 − 2y + 4).
Summary:
The critical numbers of the function g(y) = (y - 2) / (y2 − 2y + 4) are y = 0 and y = 4.
visual curriculum