from a handpicked tutor in LIVE 1-to-1 classes
Find the derivative of the function: f(x) = (2x − 3)4 (x2 + x + 1)5.
We will use the product rule to find the derivative of the given function.
Answer: The derivative of the function: f(x) = (2x − 3)4 (x2 + x + 1)5 is (2x - 3)3 (x2 + x + 1)4 (28x2 - 12x - 7).
Let's use the product rule to find the answer.
Explanation:
The derivative of xn is nxn - 1.
Derivative of (2x − 3)4 is 4 (2x − 3)3 × 2 = 8 (2x − 3)3
Derivative of (x2 + x + 1)5 is 5 (x2 + x + 1)4 × (2x + 1) = 5 (2x + 1) (x2 + x + 1)4
Derivative of f(x) = (x2 + x + 1)5 × Derivative of (2x − 3)4 + (2x − 3)4 × Derivative of (x2 + x + 1)5
= (x2 + x + 1)5 × 8 (2x − 3)3 + (2x − 3)4 × 5 (2x + 1) (x2 + x + 1)4
= (2x - 3)3 (x2 + x + 1)4 [8 (x2 + x + 1) + 5 (2x + 1) (2x − 3)]
= (2x - 3)3 (x2 + x + 1)4 [8x2 + 8x + 8 + (10x + 5) (2x − 3)]
= (2x - 3)3 (x2 + x + 1)4 [8x2 + 8x + 8 + 20x2 - 30x + 10x - 15]
= (2x - 3)3 (x2 + x + 1)4 (28x2 - 12x - 7)
You can also use Cuemath's Online Derivative Calculator.
Thus, the derivative of the function f(x) = (2x − 3)4 (x2 + x + 1)5 is (2x − 3)3 (x2 + x + 1)4 (28x2 - 12x - 7).
visual curriculum