Find the exact length of the polar curve. r = θ2, 0 ≤ θ ≤ 3π/2.
Solution:
Given, r = θ2, 0 ≤ θ ≤ 3π/2
We have to find the exact length of the polar curve.
The length of the polar curve is given by \(\int_{a}^{b}\sqrt{(r^{2}+(\frac{dr}{d\theta })^{2})d\theta }\)
Now, \(\frac{dr}{d\theta }= \frac{d(\theta )^{2}}{d\theta }=2\theta\)
Length of the polar curve = \(\int_{0}^{\frac{3\pi }{2}}\sqrt{((\theta ^{2})^{2}+(2\theta )^{2})d\theta }\)
= \(\int_{0}^{\frac{3\pi }{2}}\sqrt{(\theta^{4}+4\theta^{2})d\theta }\)
Taking out common term,
= \(\int_{0}^{\frac{3\pi }{2}}\sqrt{\theta ^{2}(\theta^{2}+4)d\theta }\)
= \(\int_{0}^{\frac{3\pi }{2}}\theta \sqrt{(\theta^{2}+4)d\theta }\)
= \(\left [ \frac{(\theta ^{2}+4)^{\frac{3}{2}}}{3}\right ]_{0}^{\frac{3\pi }{2}}\)
= \(\frac{1}{3}\left [ ((\frac{3\pi}{2})^{2}+4)^{\frac{3}{2}}-(0+4)^{\frac{3}{2}} \right ]\)
= \(\frac{1}{3}\left [ (\frac{9\pi^{2}}{4}+4)^{\frac{3}{2}}-(4)^{\frac{3}{2}} \right ]\)
= \(\frac{1}{3}\left [ (\frac{9\pi^{2}}{4}+4)^{\frac{3}{2}}-8\right ]\)
Therefore, the length of the polar curve is \(\frac{1}{3}\left [ (\frac{9\pi^{2}}{4}+4)^{\frac{3}{2}}-8\right ]\).
Find the exact length of the polar curve. r = θ2, 0 ≤ θ ≤ 3π/2.
Summary:
The exact length of the polar curve. r = θ2, 0 ≤ θ ≤ 3π/2 is \(\frac{1}{3}\left [ (\frac{9\pi^{2}}{4}+4)^{\frac{3}{2}}-8\right ]\).
visual curriculum