Find the linearization l(x) of the function at a. f(x) = x1/2 , a = 25.
Solution:
Given, the function f(x) = \((x)^{\frac{1}{2}}\)
We have to find the linearization L(x) of the function at a = 25.
Using the formula,
L(x) = f(a) + f’(a)(x - a)
Now,
f(x) = \((x)^{\frac{1}{2}}\)
f(a) = f(25) = √25
f(a) = 5
f’(x) = (√(1 - x))’
= (1/2)(1/√(x))
f’(a) = f’(25) = (1/2)(1/√(25))
= (1/2)(1/5)
= 1/10
Substituting the values of f(a) and f’(a), the function becomes
L(x) = 5 + (1/10) (x - 25)
L(x) = 5 + (1/10)x - (25/10)
L(x) = 5 + x/10 - 5/2
L(x) = (10-5)/2 + x/10
L(x) = 5/2 + x/10
Therefore, the linearization of f(x) = \((x)^{\frac{1}{2}}\) at a = 25 is L(x) = 5/2 + x/10.
Find the linearization l(x) of the function at a. f(x) = x1/2 , a = 25.
Summary:
The linearization of the function f(x) = \((x)^{\frac{1}{2}}\) at a = 25 is L(x) = 5/2 + x/10.
Math worksheets and
visual curriculum
visual curriculum