Find the point on the plane 2x - y + 2z = 20 nearest the origin.
Solution:
Given, the equation of the plane is 2x - y + 2z = 20
We have to find the point on the plane nearest to the origin.
If the equation of the plane is given by ax + by + cz = d, then
Distance = \(\frac{ap_{x}+bp_{y}+cp_{z}}{\sqrt{a^{2}+b^{2}+c^{2}}}\)
The point on the plane ax + by + cz = d nearest the origin is
\((\frac{da}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{db}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{dc}{\sqrt{a^{2}+b^{2}+c^{2}}})\)
The point on the plane 2x - y + 2z = 20 nearest the origin is
\((\frac{1\times 2}{\sqrt{(2)^{2}+(-1)^{2}+(2)^{2}}},\frac{1\times -1}{\sqrt{(2)^{2}+(-1)^{2}+(2)^{2}}},\frac{1\times 2}{\sqrt{(2)^{2}+(-1)^{2}+(2)^{2}}})\)
= \((\frac{2}{\sqrt{4+1+4}},\frac{-1}{\sqrt{4+1+4}},\frac{2}{\sqrt{4+1+4}})\)
= \((\frac{2}{\sqrt{9}},\frac{-1}{\sqrt{9}},\frac{2}{\sqrt{9}})\)
= \((\frac{2}{3},\frac{-1}{3},\frac{2}{3})\)
Therefore, the point nearest the origin is \((\frac{2}{3},\frac{-1}{3},\frac{2}{3})\).
Find the point on the plane 2x - y + 2z = 20 nearest the origin.
Summary:
The point on the plane 2x - y + 2z = 20 nearest the origin is \((\frac{2}{3},\frac{-1}{3},\frac{2}{3})\).
visual curriculum