from a handpicked tutor in LIVE 1-to-1 classes
For the function f(x) = (8 - 2x)2 ,find f-1 . Determine whether f-1 is a function.
Solution:
An inverse function reverses the operation done by a particular function. In other words, the inverse function undoes the action of the other function.
Given, f(x) = (8 - 2x)2
First replace f(x) with y.
y = (8 - 2x)2
Using the multiplicative distributive property
y = 64 - 32x + 4x2
Next replace x with y and y with x.
x = 64 - 32y + 4y2
x = 4(16 - 8y + y2)
x/4 = 16 - 8y + y2
Solving for y, we get,
x/4 = y2 - 4y - 4y + 16
x/4 = y(y - 4) - 4(y - 4)
x/4 = (y - 4) (y - 4)
x/4 = (y - 4)2
x = 4(y - 4)2
Taking square root,
√x = 2(y - 4)
√x = 2y - 8
2y = √x + 8
y = (1/2)√x + 4
Finally replace y with f-1(x).
f-1 (x) = (1/2)√x + 4
Verification:
(f ∘ f-1)(x)= x
(f ∘ f-1) (x)= f [f-1(x)]
= f [(1/2)√x + 4]
= (8 - 2[(1/2)√x + 4])2
= (8 - √x + 8)2
= (-√x)2
= x
Therefore, f-1(x) is a function.
For the function f(x) = (8 - 2x)2 ,find f-1. Determine whether f-1 is a function.
Summary:
For the function f(x) = (8 - 2x)2 , f-1(x) = (1/2)√x + 4.
visual curriculum