Given the function f(x) = 4|x - 5| + 3, for what values of x is, f(x) = 15?
Solution:
Given: Function f(x) = 4|x - 5| + 3 and f(x) = 15
We know that mod |x| = x for x > 0 and -x for x < 0
f(x) = 4|x - 5| + 3
Case(1): when f(x) = 4(x - 5) + 3
We have f(x) = 15
⇒ 4(x - 5) + 3 = 15
⇒ 4(x - 5) = 15 - 3 = 12
⇒ x - 5 = 12/4 = 3
⇒ x = 3 + 5 = 8
⇒ x = 8
Case(2): when f(x) = -4(x - 5) + 3
We have f(x) = 15
⇒ -4(x - 5) + 3 = 15
⇒ -4(x - 5) = 15 - 3 = 12
⇒ x - 5 = 12/-4 = -3
⇒ x= -3 + 5 = 2
⇒ x = 2
Therefore, the values of x are 8 and 2
Given the function f(x) = 4|x - 5| + 3, for what values of x is, f(x) = 15?
Summary:
If the function f(x) = 4|x - 5| + 3, the values of x are 8 and 2 if f(x) = 15.
Math worksheets and
visual curriculum
visual curriculum