from a handpicked tutor in LIVE 1-to-1 classes

# Given the function f(x) = 5(x+4) - 6, solve for the inverse function when x = 19?

72, 1, 84, 68

**Solution:**

Given: Function f(x) = 5(x + 4) - 6

An inverse function reverses the operation done by a particular function.

In other words, the inverse function undoes the action of the other function.

First replace f(x) with y.

y = 5(x + 4) - 6

Using the multiplicative distributive property,

y = 5x + 20 - 6

y = 5x + 14

Replace x with y and y with x.

x = 5y + 14

Solving for y, we get,

5y = x - 14

y = (x - 14)/5

Finally replace y with f ^{-1}(x).

f ^{-1}(x) = (x - 14)/5

Given x = 19,

y = (19 - 14)/5

y = 5/5

y = 1

**Verification:**

(f ∘ f ^{-1})(x)= x

(f ∘ f ^{-1})(x)= f [ f ^{-1}(x)]

= f [(x - 14)/5]

= f [x/5 - 14/5]

= 5[x/5 - 14/5] +14

= x - 14 + 14

= x

Therefore, the inverse function when x = 19 is 1.

## Given the function f(x) = 5(x + 4) - 6, solve for the inverse function when x = 19?

**Summary:**

If the function f(x) = 5(x + 4) - 6, then the inverse function when x = 19 is 1.

visual curriculum