If (9x - 4)(9x + 4) = ax2 - b, what is the value of a?
Solution:
Given, (9x - 4)(9x + 4) = ax2 - b
From algebraic identities:
We know, (a + b)(a - b) = a2 - b2
Now, 81x2 + 36x - 36x - 16 = ax2 - b
81x2 - 16 = ax2 - b
So, ax2 = 81x2
a = 81
-b = -16
b = 16
Therefore, the value of a is 81.
Example:
If (16x - 9)(16x + 9) = ax2 - b, what is the value of a?
Solution:
Given, (16x - 9)(16x + 9) = ax2 - b
We know, (a + b)(a - b) = a2 - b2
Now, 256x2 + 144x - 144x - 81 = ax2 - b
256x2 - 81 = ax2 - b
So, ax2 = 256x2
a = 16
-b = -81
b = 81
Therefore, the value of a is 16.
If (9x - 4)(9x + 4) = ax2 - b, what is the value of a?
Summary:
If (9x - 4)(9x + 4) = ax2 - b, the value of a is 81.
Math worksheets and
visual curriculum
visual curriculum