Solve the following system of equations; 2x + 2y + z = 10, 3x - y + 3z = 10, 2x + 3y - 2z = 6
Solution:
We have a system of linear equations of three variables.
Given:
2x + 2y + z = 10 --------->(1)
⇒ 3x - y + 3z = 10 --------->(2)
⇒ 2x + 3y - 2z = 6 --------->(3)
Let us solve them using the substitution method.
By solving equation [1] for the variable z, we get
Substitute z = 10 - 2x -2y in equation (2).
⇒ 3x − y + 3 (10 - 2x -2y ) = 10
⇒ 3x -y + 30 - 6x - 6y = 10
⇒ - 3x - 7y = - 20 --------->(4)
Substitute z = 10 - 2x -2y in equation (3).
⇒ 2x + 3y − 2 (10 - 2x -2y) = 6
⇒ 2x + 3y - 20 + 4x + 4y = 6
⇒ 6x + 7y = 26 ---------> (5)
Add equation (4) and (5).
⇒ (- 3x - 7y = - 20) + (6x + 7y = 26)
⇒ 3x = 6
⇒ x = 2
Put the value of x = 2 in equation (5).
⇒ 6x + 7y = 26
⇒ 6 (2) + 7y = 26
⇒ 7y = 26 - 12
⇒ y = 2
Put the value of x = 2 and y = 2 in z = 10 - 2x - 2y.
⇒ z = 10 - 2(2) - 2(2)
⇒ z = 10 - 4 - 4
⇒ z = 2
Thus x= 2, y =2 and z =2
Solve the following system of equations; 2x + 2y + z = 10, 3x - y + 3z = 10, 2x + 3y - 2z = 6
Summary:
By solving the system of linear equations 2x + 2y + z = 10, 3x - y + 3z = 10, 2x + 3y - 2z = 6; we get (x, y, z) = (2, 2, 2)
visual curriculum