Solve using quadratic formula : 4x2 + 4ax + (a2 + b2).
Solution:
A quadratic equation is in the form of ax2 + bx + c = 0.
Let's find value of x that satisfies 4x2 + 4ax + (a2 + b2) = 0.
Given, 4x² + 4ax + (a² + b²) = 0
Roots are given by the formula: x = (- b ±√ b2 - 4ac) / 2a
As we know that coefficient of x2 is a, coefficient of x is b and constant term is c, so, a = 4, b = 4a and c = (a2 + b2)
Using the quadratic formula, we get,
⇒ - 4 a ± √(4a)2 - 4 (4) (a2 + b2) / 2 (4)
⇒ - 4 a ± √(16 a2- 16 ( a2 + b2) / 8
⇒ x = - 4 a ± √(16 a2 - 16 a2 -16 b2) / 8
⇒ x = - 4 a ± √(-16b2)/ 8
⇒ x = - 4 a ± (-4bi)/ 8
x = 4 (- a ± bi ) / 8
We can have two values of 'x' that satisfies the equation.
⇒ x =(- a + bi) / 2 or x = (- a - bi) / 2
⇒x = (-a ± bi)/2
Thus, x =(-a ± bi)/2 are the solutions for equation 4x2 + 4ax + (a2 + b2).
Solve using quadratic formula : 4x2 + 4ax + (a2 + b2).
Summary:
x = (-a ± bi)/2 are the solutions for equation 4x2 + 4ax + (a2 + b2)
visual curriculum