Use the binomial series to expand the function as a power series. 3/(6 + x)3
Solution:
Given, the function is 3/(6 + x)3
We have to expand the function using binomial series.
The binomial expansion for (1 + x)n is given by \(1+nx+\frac{n(n-1)x^{2}}{2!}+\frac{n(n-1)(n-2)x^{3}}{3!}+........\)
The function can be written as 3/63(1 + (x/6))3
63 = 216
3/216 = 1/72
So, the function becomes (1/72)(1 + x/6)-3
Using binomial expansion for n = -3
(1 + x/6)-3 = \(1+(-3)\frac{x}{6}+\frac{(-3)(-3-1)(\frac{x}{6})^{2}}{2!}+\frac{(-3)(-3-1)(-3-2)(\frac{x}{6})^{3}}{3!}+....\)
\(\\=1-\frac{3x}{6}+\frac{(-3)(-4)(\frac{x}{6})^{2}}{2}+\frac{(-3)(-4)(-5)(\frac{x}{6})^{3}}{3!}+....\\=1-\frac{x}{2}+\frac{12(\frac{x^{2}}{36})}{2}-\frac{60(\frac{x^{3}}{216})}{6}+....\\=1-\frac{x}{2}+(\frac{6x^{2}}{36})-\frac{10x^{3}}{216}+....\\=1-\frac{x}{2}+\frac{x^{2}}{6}-\frac{5x^{3}}{108}+.....\)
Therefore, (1/72)(1+ x/6)-3 = \(=\frac{1}{72}[1-\frac{x}{2}+\frac{x^{2}}{6}-\frac{5x^{3}}{108}+.....]\).
Use the binomial series to expand the function as a power series. 3/(6 + x)3
Summary:
Using binomial series to expand the function 3/(6 + x)3 as a power series is \(=\frac{1}{72}[1-\frac{x}{2}+\frac{x^{2}}{6}-\frac{5x^{3}}{108}+.....]\).
visual curriculum