Use this equation to find dy/dx. 8y cos(x) = x2 + y2
Solution:
Given 8ycos(x) = x2 + y2
This is an implicit function
By implicit differentiation, we get
⇒ d/dx {8ycosx} = d/dx(x2 + y2)
⇒ 8[dy/dxcosx + y(-sinx)] = 2x + 2ydy/dx
⇒8[dy/dxcosx + y(-sinx)] = 2[x + ydy/dx]
⇒4[dy/dxcosx + y(-sinx)] = [x + ydy/dx]
⇒4dy/dxcosx + -4y sinx = x + ydy/dx
⇒4dy/dx. cosx -ydy/dx = x + 4y sinx
⇒dy/dx(4 cos x -y)= x + 4y sinx
⇒ dy/dx= [x + 4y sinx]/[(4 cos x -y)]
Use this equation to find dy/dx. 8y cos(x) = x2 + y2
Summary:
The value of dy/dx of 8y cos(x) = x2 + y2 is [x + 4y sinx]/[(4 cos x -y)]
Math worksheets and
visual curriculum
visual curriculum