Write the given expression in terms of x and y only tan(sin-1(x) + cos-1(y)).
Solution:
Given, tan(sin-1(x) + cos-1(y))
Put sin-1(x) = ⍺ and cos-1(y) = ꞵ
From figure, tan ⍺ = x / √(1 - x2) and tan ꞵ = √(1 - y2)/ y
tan (⍺ + ꞵ) = [tan ⍺ + tan ꞵ] / [ 1 - (tan ⍺ × tan ꞵ)]
tan (⍺ + ꞵ) = [ x / √(1 - x2) + √(1 - y2) / y]/ [ 1 - ((x / √(1 - x2) × √(1 - y2) / y))]
tan (⍺ + ꞵ) = [(xy + √(1 - y2)√(1 - x2)) / √(1 - x2)y] / [(y√(1 - x2) - x√(1 - y2))/ √(1 - x2)y]
tan (⍺ + ꞵ) = (xy + √(1 - y2)√(1 - x2)) / (y√(1 - x2) - x√(1 - y2))
Write the given expression in terms of x and y only tan(sin-1(x) + cos-1(y)).
Summary:
The given expression tan(sin-1(x) + cos-1(y)) in terms of x and y is tan (⍺ + ꞵ) = (xy + √(1 - y2)√(1 - x2)) / (y√(1 - x2) - x√(1 - y2)).
Math worksheets and
visual curriculum
visual curriculum