Find limₓ→₅ f (x), where f (x) = |x| - 5
Solution:
The given function is f (x) = |x| - 5.
To find the value of the given limit, we will calculate the left-hand and the right-hand side limits.
limₓ→₅₋ f (x) = limx→5- [|x| - 5]
= limₓ→₅ (x- 5) [When x > 0, |x| = x]
= 5 - 5
= 0
limₓ→₅₊ f (x) = limx→5+ [|x| - 5]
= limₓ→₅ (x - 5) [When x > 0, |x| = x]
= 5 - 5
= 0
We have
limₓ→₅₋ f (x) = limₓ→₅₊ f (x) = 0
Hence, limₓ→₅ f (x) = 0
NCERT Solutions Class 11 Maths Chapter 13 Exercise 13.1 Question 27
Find limₓ→₅ f (x), where f (x) = |x| - 5
Summary:
The value of limit limₓ→₅ f (x) is 0
Math worksheets and
visual curriculum
visual curriculum