Find the sum of the first n terms of the series: 3 + 7 + 13 + 21 + 31 + ....
Solution:
The given series is 3 + 7 + 13 + 21 + 31 + ..., can be written as
S = 3 + 7 + 13 + 21 + 31 + .... + aₙ ₋ ₁ + aₙ ....(1)
S = 3 + 7 + 13 + 21 + .... aₙ ₋ ₂ + aₙ ₋ ₁ + aₙ ....(2)
On subtracting the equation (2) from (1) , we obtain
S - S = [3 + 7 + 13 + 21 + 31 + .... + aₙ ₋ ₁ + aₙ] - [3 + 7 + 13 + 21 + .... aₙ ₋ ₂ + aₙ ₋ ₁ + aₙ]
0 = 3 + [(7 - 3) + (13 - 7) + (21 - 13) + .... + (aₙ - aₙ - 1)] - aₙ
0 = 3 + [4 + 6 + 8 + .... (n - 1) terms]- aₙ
aₙ = 3 + [4 + 6 + 8 + .... (n - 1) terms]
Now using the sum of A.P. formula,
aₙ = 3 + [(n - 1)/2] [2 x 4 + (n - 1 - 1) 2]
aₙ = 3 + [(n - 1)/2] [8 + 2n - 4]
aₙ = 3 + [(n - 1)/2] [2n + 4]
aₙ = 3 + (n - 1)(n + 2)
aₙ = 3 + (n2 + n - 2)
a = n2 + n + 1
Therefore,
∑nₖ ₌ ₁ (a)k = k2 + k + 1
= ∑nₖ ₌ ₁ k2 + ∑nₖ ₌ ₁ k + ∑nₖ ₌ ₁ 1
Now, using summation formulas,
= [n (n + 1)(2n + 1)]/6 + [n (n + 1)]/2 + n
= n [(n +1)(2n + 1) + 3(n + 1) + 6]/6
= n [2n2 + 3n + 1 + 3n + 3 + 6]/6
= n [2n2 + 6n + 10]/6
= n/3 (n2 + 3n + 5)
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 23
Find the sum of the first n terms of the series: 3 + 7 + 13 + 21 + 31 + ....
Summary:
The sum of the first n terms of the series 3 + 7 + 13 + 21 + 31 + .... is n/3 (n2 + 3n + 5)
visual curriculum