If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a² + b²) (c² + d²) (e² + f²) (g² + h²) = A² + B²
Solution:
It is given that
= (a + ib) (c + id) (e + if) (g + ih) = A + iB
Taking modulus on both sides,
|(a + ib) (c + id) (e + if) (g + ih)| =|A + iB|
For any two complex numbers z and z₁, we have |zz₁| = |z| · |z₁|. Applying this to the left side part of the above equation,
|(a + ib)| |(c + id)| |(e + if)| |(g + ih)|| = |A + iB|
√(a² + b²) √(c² + d²) √(e² + f²) √(g² + h²) = √(A² + B²)
Squaring on both sides,
(a² + b²) (c² + d²) (e² + f²) (g² + h²) = A² + B².
Hence proved
NCERT Solutions Class 11 Maths Chapter 5 Exercise ME Question 19
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a² + b²) (c² + d²) (e² + f²) (g² + h²) = A² + B²
Summary:
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then we have shown that (a² + b²) (c² + d²) (e² + f²) (g² + h²) = A² + B²
Math worksheets and
visual curriculum
visual curriculum