Learn Ncert All Solutions

from a handpicked tutor in LIVE 1-to-1 classes

from a handpicked tutor in LIVE 1-to-1 classes

# Let a₁, a₂, ...., aₙ be fixed real numbers and define a function

f (x) = ( x - a₁)( x - a₂)....( x - aₙ).

What is limₓ→ₐ₁ f (x) ? For some a ≠ a₁, a₂, ...., aₙ, compute limₓ→ₐ f (x).

**Solution:**

The given function is f (x) = ( x - a₁)( x - a₂)....( x - aₙ)

We will evaluate the given limits now.

limₓ→ₐ₁ f (x) = limₓ→ₐ₁ [( x - a₁)( x - a₂)....( x - aₙ)]

= (a₁ - a₁)(a₁ - a₂) .... (a₁ - aₙ)

= 0

Now,

limₓ→ₐ f (x) = limₓ→ₐ [( x - a₁)( x - a₂)....( x - aₙ)]

= (a - a₁)(a - a₂) .... (a - aₙ) [None of these are zero as a ≠ a₁, a₂, ...., aₙ]

Thus, limₓ→ₐ f (x) = (a - a₁)(a - a₂) .... (a - aₙ)

NCERT Solutions Class 11 Maths Chapter 13 Exercise 13.1 Question 29

## Let a₁, a₂, ...., aₙ be fixed real numbers and define a function f (x) = ( x - a₁)( x - a₂)....( x - aₙ). What is limₓ→ₐ₁ f (x) ? For some a ≠ a₁, a₂, ...., aₙ, compute limₓ→ₐ f (x).

**Summary:**

We found that limₓ→ₐ₁ f (x) = 0 and the value of limit limₓ→ₐ f (x) = (a - a₁)(a - a₂) .... (a - aₙ)

Math worksheets and

visual curriculum

visual curriculum