# Say true or false and justify your answer: (i) 10 × 10^{11 }= 100^{11 }(ii) 2^{3} > 5^{2 }(iii) 2^{3} × 3^{2} = 6^{5 }(iv) 3^{0} = 1000^{0}

**Solution:**

To solve this question, we will be using the laws of exponents.

(i) 10 × 10^{11} = 100^{11}

LHS = 10 × 10^{11} = 10^{11 }^{+ 1} = 10^{12} [a^{m} × a^{n} = a^{m + n}]

RHS = 100^{1}^{1} = (10^{2} )^{11} = 10^{2}^{2} [(a^{m})^{n} = a^{mn}]

Therefore,10^{12} ≠ 10^{22}

Thus, the statement is false.

(ii) 2^{3} > 5^{2}

LHS = 2^{3} = 2 × 2 × 2 = 8

RHS = 5^{2} = 5× 5 = 25

Therefore, 2^{3} < 5^{2}

Thus, the statement is false.

(iii) 2^{3} × 3^{2} = 6^{5}

LHS = 2^{3} × 3^{2} = 2 × 2 × 2 × 3 × 3 = 72

RHS = 6^{5} = 6 × 6 × 6 × 6 × 6 = 7776

Therefore, 2^{3} × 3^{2} ≠ 6^{5}

Thus, the statement is false.

(iv) 3^{0} = 1000^{0} = 1 [Since, a^{0} = 1]

Thus, the statement is true.

**☛ Check: **NCERT Solutions for Class 7 Maths Chapter 13

**Video Solution:**

## Say true or false and justify your answer: (i) 10 × 10¹¹^{ }= 100¹¹^{ }(ii) 2³ > 5²^{ }(iii) 2³ × 3² = 6⁵^{ }(iv) 3⁰ = 1000⁰

Maths NCERT Solutions Class 7 Chapter 13 Exercise 13.2 Question 3

**Summary:**

For the following (i) 10 × 10^{11 }= 100^{11 }(ii) 2^{3} > 5^{2 }(iii) 2^{3} × 3^{2} = 6^{5 }(iv) 3^{0} = 1000^{0} are as follows: (i) False, (ii) False, (iii) False, (iv) True

**☛ Related Questions:**

- Using Laws Of Exponents Simplify And Write The Answer In Exponential Form I 32 X 34 X 38 Ii 615 610 Iii A3 X A2 Iv 7x X 72
- Simplify And Express Each Of The Following In Exponential Form I 23 X 33 X 4 3x32 Ii 523 X 54 57 Iii 254 53
- Express Each Of The Following As A Product Of Prime Factors Only In Exponential Form I 108 X 192 Ii 270 Iii 729 X 64 Iv 768
- Simplify I 252 X 73 83 X 7 Ii 25 X 52 X T8 103 X T4 Iii 35 X105 X 25 57 X 65

visual curriculum