Write the function in the simplest form : tan- 1 x/√(a² + x²), |x| < a
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios.
Here the basic trigonometric function of Sin θ = y can be changed to θ = sin-1 y
Let x = a sin θ
⇒ θ = sin- 1 (x / a)
Hence,
tan- 1 x/√(a² + x²)
Using trigonometric identity
= tan- 1(a sinθ / √(a² - a² sin² θ)
= tan- 1 (a sin θ / a √(1 - sin² θ)
= tan- 1 (a sinθ / a cos θ)
= tan- 1 (tan θ)
= θ
= sin- 1 (x / a)
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.2 Question 9
Write the function in the simplest form : tan- 1 x/√(a² + x²), |x| < a
Summary:
The function in the simplest form : tan- 1 x/√(a² + x²), |x| < a can be written as sin- 1 (x / a). Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios
Math worksheets and
visual curriculum
visual curriculum