Find sin(2x), cos(2x), and tan(2x) from the given information. sin(x) = 8 / 17 , x in quadrant I
Solution:
Given, sin(x) = 8/17
We have to find the value of sin(2x), cos(2x), and tan(2x) in the first quadrant.
We know, sin2x + cos2x = 1
(8/17)2 + cos2x = 1
cos2x = 1 - (64/289)
cos2x = 225/289
Taking square root,
cos x = ±15/17
In the first quadrant cos x has to be positive.
Thus, cos x = +15/17
Now, sin 2x = 2 sinx cosx
sin 2x = 2(8/17)(15/17)
sin 2x = 240 / 289
We know, cos 2x = cos2x - sin2x
cos 2x = (15/17)2 - (8/17)2
cos 2x = (225 / 289) - (64 / 289)
cos 2x = (225 - 64) / 289
cos 2x = 161 / 289
We know, tan 2x = sin 2x / cos 2x
tan 2x = (240 / 289)/(161 / 289)
tan 2x = 240 / 161
Therefore, the values of sin 2x, cos 2x and tan 2x are 240 / 289, 161 / 289 and 240 / 161.
Find sin(2x), cos(2x), and tan(2x) from the given information. sin(x) = 8 / 17 , x in quadrant I
Summary:
The values of sin 2x, cos 2x and tan 2x from the given information sin(x) = 8/17 , x in quadrant I are 240 / 289, 161 / 289 and 240 / 161 in the first quadrant.
visual curriculum