Find the derivative of the function using the definition of the derivative. g(t) = 5/√t.
Solution:
Given, g(t) = 5/√t
We have to find the derivative of the function.
The differentiation by the first principle states that,
f’(x) = [f(x + h) - f(x)]/h
Where h → 0
Now, g’(t) = [5/√(t + h) - (5/√t)]/h
g’(t) = \(\dfrac{5√t - 5√(t + h)}{h.(√t + h)(√t)}\)
g’(t) = \(\dfrac{5(√t - √(t + h))}{h.(√t + h)(√t)}\)
= \(\dfrac{-5}{(√t + h)(√t)}\)
By using the conjugate of √t - √(t + h)
Multiplying by √t + √(t + h)/√t + √(t + h)
g’(t) = \(\lim_{h \to 0}\)\(\dfrac{-5}{.(√t + h)(√t)}\) . \(\dfrac{√t + √(t+h}{√t + √(t+h)}\)
= \(\lim_{h \to 0}\frac{-5}{(\sqrt{t+h}\sqrt{t})(\sqrt{t}+\sqrt{t+h})}\)
Now, evaluating the limit,
g’(t) = \(\frac{-5}{(\sqrt{t+0}\sqrt{t})(\sqrt{t}+\sqrt{t+0})}\)
g’(t) = \(\frac{-5}{(\sqrt{t}\sqrt{t})(\sqrt{t}+\sqrt{t})}\)
g’(t) = \(\frac{-5}{(t)(2\sqrt{t})}\)
g’(t) = \(\frac{-5}{2t\sqrt{t}}\)
Therefore, the derivative of the function is \(\frac{-5}{2t\sqrt{t}}\).
Find the derivative of the function using the definition of derivative. g(t) = 5/√t.
Summary:
The derivative of the function using the definition of derivative. g(t) = 5/√ t is \(\frac{-5}{2t\sqrt{t}}\).
visual curriculum