Find the exact length of the curve. y = ln(1-x2), 0 ≤ x ≤ 1/7.
Solution:
Given, y = ln(1 -x2 ), 0 ≤ x ≤ 1/7
Length of the curve, y = f(x) from x = a to x = b is given by:
\(\int_{a}^{b}\sqrt{1+f'(x)^{2}} .dx\)
y = ln(1-x2)
Differentiating w.r.t. x,
dy/dx = 1/(1 - x2) × (-2x) = -2x/(1 - x2)
Length of the curve,
= \(\int_{0}^{1/7}\sqrt{1+\left [\frac{-2x}{(1-x^{2})} \right ]^{2}} .dx\)\
= \(\int_{0}^{1/7}\sqrt{\left [ \frac{1 +x^{4}-2x^{2}+4x^{2}}{(1-x^{2})^{2}} \right ]} .dx\)
= \(\int_{0}^{1/7}\sqrt{\frac{(1+x^{2})^{2}}{(1-x^{2})^{2}}} . dx\)
= \(\int_{0}^{1/7}\frac{1+x^{2}}{1-x^{2}} . dx\)
{By dividing numerator by denominator and expressing using
Dividend/Divisor = Quotient + (Remainder/Divisor)]}
= \(\int_{0}^{1/7}-1 + \frac{2}{1-x^{2}}.dx\)
= \(-x \Biggr|_{0}^{1/7} + 2 \frac{1}{2} log\left | \frac{1 + x}{1-x} \right |\Biggr|_{0}^{1/7}\)
= \(-\left ( \frac{1}{7}-0 \right ) + log \left | \frac{1+ \frac{1}{7}}{1-\frac{1}{7}} \right |-log\left | \frac{1+0}{1-0} \right |\)
= \(-\frac{1}{7} + log\left | \frac{8}{6} \right |- log (1)\)
= \(-\frac{1}{7} + log\left | \frac{8}{6} \right |- 0\)
= log(4/3) - 1/7
Therefore, the exact length of the curve, y = ln(1- x2), 0 ≤ x ≤ 1/7 is log(4/3) - 1/7.
Find the exact length of the curve. y = ln(1- x2), 0 ≤ x ≤ 1/7.
Summary:
The exact length of the curve, y = ln(1-x2), 0 ≤ x ≤ 1/7 is log(4/3) - 1/7.
visual curriculum