Solve the given differential equation by separation of variables. csc(y) dx + sec2(x) dy = 0
Solution:
Given, the differential equation is cosec (y) dx + sec2(x) dy = 0
We have to solve the equation by separation of variables.
The equation can be rewritten as
cosec (y) dx = -sec2(x) dy
We know, cosec y = 1/sin y and sec x = 1/cos x
\(\frac{1}{sin y}dx=\frac{-1}{cos^{2}x}dy\)
cos2(x) dx = -siny dy
Taking integral,
\(\int cos^{2}x\: dx\, =\, \int -siny\, dy\)
We know, \(cos^{2}x=\frac{1+cos(2x)}{2}\)
Now, \(\int \frac{1+cos(2x)}{2} dx = \int -siny dy\)
On rearranging the terms,
\(\int \frac{1}{2}dx\, +\, \int \frac{1}{2}cos(2x)dx\, =\, \int -siny\, dy\)
\(\frac{1}{2}\int dx\, +\, \frac{1}{2}\int cos(2x)dx\, =\, \int -siny\, dy\)
\(\frac{1}{2}x\, +\, \frac{1}{2}\, \frac{sin(2x)}{2}\, =\, cosy\, +\, C\)
\(\frac{1}{2}x\, +\, \frac{sin(2x)}{4}\, =\, cosy\, +\, C\)
Therefore, the solution is \(\frac{1}{2}x\, +\, \frac{sin(2x)}{4}\, =\, cosy\, +\, C\)
Solve the given differential equation by separation of variables. csc(y) dx + sec2(x) dy = 0
Summary:
The solution to the differential equation cosec (y) dx + sec2(x) dy = 0 by separation of variables is \(\frac{1}{2}x\, +\, \frac{sin(2x)}{4}\, =\, cosy\, +\, C\)
visual curriculum