Write the expression as either the sine, cosine, or tangent of a single angle.
sin48° cos15° - cos48° sin15°
Solution:
Given:
Expression is sin 48° cos 15° - cos 48° sin 15°,
which is of the form
sin A cos B - cos A sin B = sin (A - B),
which is a compound angle formula of trigonometric ratios.
Here,
A = 8x and B = 2x.
Substituting these values in the formula we get,
sin 48° cos 15° - cos 48° sin 15°
= sin (48° - 15°)
= sin 33°
Write the expression as either the sine, cosine, or tangent of a single angle.
sin48° cos15° - cos48° sin15°
Summary:
The expression for the given trigonometric function, sin 48° cos 15° - cos 48° sin 15°, can be written as sin = 33°.
Math worksheets and
visual curriculum
visual curriculum