# Find and correct the errors in the statement: (3x + 2)^{2} = 3x^{2} + 6x + 4

**Solution:**

An equation is a mathematical statement with an 'equal to' symbol between two algebraic expressions that have equal values.

Given,

(3x + 2)^{2} = 3x^{2} + 6x + 4

Solving LHS we get,

(3x + 2)^{2}

= (3x)^{2} + 2(3x)(2) + (2)^{2} [Using identity (a + b)^{2} = a^{2} + 2ab + b^{2}]

= 9x^{2} + 12x + 4

But RHS is given as 3x^{2} + 6x + 4

Thus, L.H .S. ≠ R.H.S.

The correct statement is (3x + 2)^{2} = 9x^{2 }+ 12x + 4

**Video Solution:**

## Find and correct the errors in the statement: (3x + 2)² = 3x² + 6x + 4

### Class 8 Maths NCERT Solutions - Chapter 14 Exercise 14.4 Question 9

**Summary:**

Find and correct the errors in the statement: (3x + 2)^{2} = 3x^{2} + 6x + 4. The correct statement is (3x + 2)^{2} = 9x^{2 }+ 12x + 4.