from a handpicked tutor in LIVE 1-to-1 classes

# Find the common factors of the given terms

(i) 12x, 36 (ii)2y, 22xy (iii)14pq, 28p^{2}q^{2 }(iv)2x, 3x^{2}, 4

(v) 6abc, 24ab^{2}, 12a^{2}b (vi) 16x^{3}, - 4x^{2}, 32x

(vii)10 pq, 20qr, 30rp (viii)3x^{2} y^{3}, 10x^{3}y^{2}, 6x^{2}y^{2}z

**Solution:**

We will first find out factors of each term then check which factors are common in each term.

(i) 12x = 2 × 2 × 3 × x

36 = 2 × 2 × 3 × 3

The common factors are 2, 2, 3.

Thus, 2 × 2 × 3 = 12

(ii) 2y = 2 × y

22xy = 2 × 11 × x × y

The common factors are 2, y.

Thus, 2 × y = 2y

(iii) 14pq = 2 × 7 × p × q

28p^{2}q^{2} = 2 × 2 × 7 × p × p × q × q

The common factors are 2, 7, p, q.

Thus, 2 × 7 × p × q = 14pq

(iv) 2x = 2 × x

3x^{2} = 3 × x × x

4 = 2 × 2

The common factor is 1.

(v) 6abc = 2 × 3 × a × b × c

24ab^{2} = 2 × 2 × 2 × 3 × a × b × b

12a^{2}b = 2 × 2 × 3 × a × a × b

The common factors are 2, 3, a, b.

Thus, 2 × 3 × a × b = 6ab

(vi) 16x^{3} = 2 × 2 × 2 × 2 × x × x × x

-4x^{2} = -1 × 2 × 2 × x × x

32x = 2 × 2 × 2 × 2 × 2 × x

The common factors are 2, 2, x.

Thus, 2 × 2 × x = 4x

(vii) 10pq = 2 × 5 × p × q

20qr = 2 × 2 × 5 × q × r

30rp = 2 × 3 × 5 × r × p

The common factors are 2, 5.

Thus, 2 × 5 = 10

(viii) 3x^{2}y^{3} = 3 × x × x × y × y × y

10x^{3}y^{2} = 2 × 5 × x × x × x × y × y

6x^{2}y^{2}z = 2 × 3 × x × x × y × y × z

The common factors are x, x, y, y.

Thus, x × x × y × y = x^{2} y^{2}

**☛ Check: **NCERT Solutions for Class 8 Maths Chapter 14

**Video Solution:**

## Find the common factors of the terms (i) 12x, 36 (ii)2y, 22xy (iii)14pq, 28p²q²^{ }(iv)2x, 3x², 4 (v) 6abc, 24ab², 12a²b (vi) 16x³, - 4x², 32x (vii)10 pq, 20qr, 30rp (viii)3x² y³, 10x³y², 6x²y²z

Class 8 Maths NCERT Solutions Chapter 14 Exercise 14.1 Question 1

**Summary:**

The common factors of the terms (i) 12x, 36 (ii)2y, 22xy (iii)14pq, 28p^{2}q^{2 }(iv)2x, 3x^{2}, 4 (v) 6abc, 24ab^{2}, 12a^{2}b (vi) 16x^{3}, - 4x^{2}, 32x (vii)10 pq, 20qr, 30rp (viii)3x^{2} y^{3}, 10x^{3}y^{2}, 6x^{2}y^{2}z are as follows (i) 2, 2, 3 = 12 (ii) 2, y = 2y (iii) 2, 7, p, q = 14pq (iv) 1 (v) 2, 3, a, b = 6ab (vi) 2, 2, x = 4x (vii) 2, 5 = 10 (viii) x, x, y, y = x^{2} y^{2}

**☛ Related Questions:**

- Factorise the following expressions (i) 7x - 42 (ii) 6p-12q (iii) 7a2+14a (iv) -16z + 20z3 (v) 20l2m + 30alm (vi) 5x2y -15xy2 (vii) 10a2 -15b2 + 20c2 (viii) -4a2 + 4ab - 4ca (ix) x2yz + xy2z + xyz2 (x) ax2y + bxy2 + cxyz
- Factorize: (i) x2+ xy + 8x + 8 y (ii) 15xy- 6x + 5 y - 2 (iii) ax+ bx - ay - by (iv) 15 pq +15 + 9q + 25 p (v) z - 7 + 7xy - xyz
- Factorize the following expressions. (i) a2 + 8a +16 (ii) p2 -10 p + 25 (iii) 25m2 + 30m + 9 (iv) 49 y2 + 84 yz + 36z2 (v) 4x2 - 8x + 4 (vi) 121b2 - 88bc +16c2 (vii) (l +m)2 - 4lm (Hint: Expand (l + m)2 first) (viii) a4+ 2a2b2 + b4.
- Factorize (i) 4 p2 - 9q2 (ii) 63a2 - 112b2 (iii) 49x2 - 36 (iv) 16x5 - 144x3 (v) (l + m)2 - (l - m)2 (vi) 9x2y2 - 16 (vii) (x2 - 2xy + y2) - z2 (viii) 25a2 - 4b2 + 28bc - 49c2

visual curriculum