from a handpicked tutor in LIVE 1-to-1 classes
Prove the following: cos22x - cos26x = sin 4x sin 8x
Solution:
LHS = cos22x - cos26x
= (cos 2x + cos 6x) (cos 2x - cos 6x)
[Using a² - b² formula]
= [2cos {(2x + 6x) / 2} cos {(2x - 6x) / 2}] × [ -2 sin {(2x + 6x) / 2} sin {(2x - 6x) / 2}]
{Since cos A + cos B = 2cos [(A + B) / 2] cos [(A - B) / 2] and cos A - cos B = -2sin [(A + B) / 2] sin [(A - B) / 2]}
= [2cos 4x cos (-2x)] × [-2sin 4x sin (-2x)]
= [2cos 4x cos 2x] × [-2sin 4x (-sin 2x)]
[By trigonometric formulas, cos (-A) = cos A and sin (-A) = -sin A]
= [2cos 4x cos 2x] × [2sin 4x sin 2x]
= [2cos 4x sin 4x] × [2cos 2x sin 2x]
= [sin (4x + 4x) - sin (4x - 4x)] × [sin (2x + 2x) - sin (2x - 2x)]
[Since 2cos A sin B = sin (A + B) - sin (A - B)]
= [sin 8x + sin 0] × [sin 4x + sin 0]
= sin 8x × sin 4x
[by trigonometric table sin 0 = 0]
= sin 4x sin 8x
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise 3.3 Question 13
Prove the following: cos22x - cos26x = sin 4x sin 8x
Summary:
We got, cos22x - cos26x = sin 4x sin 8x. Hence Proved
visual curriculum