The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32º and ∠AOB = 70º, then ∠DBC is equal to
a. 24º
b. 86º
c. 38º
d. 32º
Solution:
Given,
ABCD is a parallelogram
AC and BD are the diagonals
AD || BC
∠DAC = ∠ACB [Alternate angle]
∠ACB = 32º
We know that
∠AOB + ∠BOC = 180º [Straight line]
Substituting the values
70º + ∠BOC = 180º
∠BOC = 110º
In Δ BOC,
∠OBC + ∠BOC + ∠OCB = 180º
Substituting the values
∠OBC + 110º + 32º = 180º
∠OBC = 38º
∠DBC = 38º
Therefore, ∠DBC is equal to 38º.
✦ Try This: The diagonals PR and QS of a parallelogram PQRS intersect each other at the point O. If ∠SPR = 50º and ∠POQ = 80º, then ∠SQR is equal to a. 24º, b. 86º, c. 38º, d. 32º
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 8
NCERT Exemplar Class 9 Maths Exercise 8.1 Problem 12
The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32º and ∠AOB = 70º, then ∠DBC is equal to , a. 24º, b. 86º, c. 38º, d. 32º
Summary:
The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32º and ∠AOB = 70º, then ∠DBC is equal to 38º
☛ Related Questions:
- If APB and CQD are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form , . . . .
- The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ,a. a rh . . . .
- D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined . . . .
visual curriculum