Write the function in the simplest form : tan- 1 √(cosx - sin x)/(cos x + sin x), 0 < x < π
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios.
Here the basic trigonometric function of Sin θ = y can be changed to θ = sin-1 y
Using trigonometric identity
tan- 1 √(cos x - sin x) / (cos x + sin x)
On dividing numerator and denominator by cos x, we get
= tan- 1 [((cos x - sin x) / cos x) / ((cos x + sin x) / cos x)]
= tan- 1 [(1 - (sin x) / (cos x)) / (1 + (sin x) / cos x))]
Since ,
sin x / cos x = tan x
we get,
= tan- 1 [(1 - tan x) / (1 + tan x)]
= tan- 1 (1) - tan- 1 (tan x)
= π / 4 - x
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.2 Question 8
Write the function in the simplest form : tan- 1 √(cosx - sin x)/(cos x + sin x), 0 < x < π
Summary:
The function in the simplest form : tan- 1 √(cosx - sin x)/(cos x + sin x), 0 < x < π can be expressed as π / 4 - x
Math worksheets and
visual curriculum
visual curriculum