The following set of coordinates represents which figure? (-5 ,2), (-3, 4), (1, 0), (-1, -2)
a) Kite b) Rectangle c) Rhombus d) Square
Solution:
We know that
A Kite is a quadrilateral where exactly two pairs of adjacent sides are equal.
A rectangle is a quadrilateral where opposite sides are equal.
A square and rhombus are quadrilaterals in which all sides are equal.
The set of coordinates given are
A(-5, 2), B(-3, 4), C(1, 0), D(-1, -2)
We have to find the figure represented by the set of coordinates.
Distance between the points is given by
Distance = \(\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\)
AB = \(\sqrt{(-3-(-5))^{2}+(4-2)^{2}}\\=\sqrt{(-3+5)^{2}+(2)^{2}}\\=\sqrt{(2)^{2}+(2)^{2}}\\=\sqrt{4+4}\\=\sqrt{8}\)
BC = \(\sqrt{(1-(-3))^{2}+(0-4)^{2}}\\=\sqrt{(1+3)^{2}+(-4)^{2}}\\=\sqrt{(4)^{2}+(-4)^{2}}\\=\sqrt{16+16}\\=\sqrt{32}\)
CD = \(\sqrt{(-1-1)^{2}+(-2-0)^{2}}\\=\sqrt{(-2)^{2}+(-2)^{2}}\\=\sqrt{4+4}\\=\sqrt{8}\)
AD = \(\sqrt{(-1-(-5))^{2}+(-2-2)^{2}}\\=\sqrt{(-1+5)^{2}+(-4)}\\=\sqrt{(4)^{2}+(-4)^{2}}\\=\sqrt{16+16}\\=\sqrt{32}\)
Here, AB = CD and AD = BC.
Slope of AB = (y2 - y1)/ (x2 - x1) = (4 - 2)/ (-3 + 5) = 2/2 = 1
Slope of CD = (-2 - 0)/ (-1 - 1) = -2/-2 = 1
Therefore, the given coordinate points represent a rectangle.
The following set of coordinates represents which figure? (-5 ,2), (-3, 4), (1, 0), (-1, -2)
Summary:
The following set of coordinates (-5 ,2), (-3, 4), (1, 0), (-1, -2) represents a rectangle.
visual curriculum