Complete the table
Solution:
Multiplication of two algebraic expressions or variable expressions involves multiplying two expressions that are combined with arithmetic operations such as addition, subtraction, multiplication, division, and contain constants, variables, terms, and coefficients.
i) a (b + c + d) = ab + ac + ad
ii) (x + y - 5) (5xy) = 5x^{2}y + 5xy^{2} - 25xy
iii) p(6 p^{2} - 7 p + 5) = 6 p^{3} - 7 p^{2} + 5 p
iv) 4 p^{2}q^{2}(p^{2} - q^{2}) = 4 p^{4}q^{2} - 4 p^{2}q^{4}
v) (a + b + c) (abc) = a^{2}bc + ab^{2}c + abc^{2}
First expression | Second Expression | Product | |
(i) | a | b + c + d | ab + ac + ad |
(ii) | x + y - 5 | 5xy | 5x^{2}y + 5xy^{2} - 25xy |
(iii) | p | 6 p^{2} - 7 p + 5 | 6 p^{3} - 7 p^{2} + 5 p |
(iv) | 4 p^{2}q^{2} | p^{2} - q^{2} | 4 p^{4}q^{2} - 4 p^{2}q^{4} |
(v) | a + b + c | abc | a^{2}bc + ab^{2}c + abc^{2} |
☛ Check: NCERT Solutions for Class 8 Maths Chapter 9
Video Solution:
Complete the table
NCERT Solutions Class 8 Maths Chapter 9 Exercise 9.3 Question 2
Summary:
From the table, multiply the first expression and second expression to complete the table.
☛ Related Questions:
- Carry out the multiplication of the expressions in each of the following pairs. (i) 4 p, q + r (ii) ab, a - b (iii) a + b, 7a2b2 (iv) a2 - 9, 4a (v) pq + qr + rp, 0
- Find the product. (i) (a2 ) × (2a22 ) × (4a26) (ii) (2/3 xy) × (-9/10 x2 y2) (iii) (-10/3 pq3 ) × (6/5 p3q) (iv) x × x2 × x3 × x4
- (a) Simplify 3x(4x - 5) + 3 and find its values for (i) x = 3 (ii) x = 1/2 (b) Simplify a (a2 + a + 1)+ 5 and find its values for (i) a = 0, (ii) a =1, (iii) a = - 1
- (a) Add: p( p - q), q(q - r ) and r (r - p) (b) Add: 2x (z - x - y) and 2y(z- y - x) (c) Subtract: 3l (l - 4m + 5n) from 4l (10n - 3m + 2l ) (d) Subtract: 3a(a + b + c) - 2b(a - b + c) from 4c (-a + b + c)
visual curriculum