Prove that ((√1 + sin x + √1 - sin x)/(√1 + sin x - √1 - sin x)) = x/2, x ∈ (0, π/4)
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios
Here the basic trigonometric function of Sin θ = y, can be changed to θ = sin-1 y
Let us proceed from LHS:
[(√1 + sin x + √1 - sin x)/(√1 + sin x - √1 - sin x)]
= [(√1 + sin x + √1 - sin x)2 / (√1 + sin x)2 - (√1 - sin x)2] (by rationalizing )
= [(1 + sin x) + (1 - sin x) + 2 √(1 + sin x)(1 - sin x)] / [(1 + sin x - 1 + sin x)]
Using trigonometric identities,
= 2 (1 + √1 - sin² x) / (2 sin x)
= (1 + cos x) / sin x
= (2 cos2 x/2) / (2 sin x/2 cos x/2)
= cot x/2
Thus,
LHS
= cot- 1 ((√1 + sin x + √1 - sin x) / (√1 + sin x - √1 - sin x))
= cot- 1 (cot x/2)
= x/2
= RHS
Hence LHS = RHS
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise ME Question 10
Prove that ((√1 + sin x + √1 - sin x)/(√1 + sin x - √1 - sin x)) = x/2, x ∈ (0, π/4)
Summary:
Hence we have proved by using inverse trigonometric functions that ((√1 + sin x + √1 - sin x)/(√1 + sin x - √1 - sin x)) = x/2, x ∈ (0, π/4)
visual curriculum