Measurement Formulas

Go back to  'Math Formulas'

Measurement Formulas is the estimation of ratios of quantity it compares a quantity with a standard unit. Measurement Formulas are used to find the distance, area, surface area, volume, circumference, etc. They also include some conversion formulas like conversion of an inch to feet, meter to miles, etc. Some of the Measurement Formulas are given below:

What is Measurement Formulas?

Measurement Formulas can be expressed as,

Area of a triangle = (1 ⁄ 2) × Base × Height
Distance = \(\sqrt{(x_2-x_1)^2-(y_2-y_1)^2}\)
Area of a Parallelogram = Height × Base
Area of a Rectangle = Length × Breadth
Area of a Square = (side)2
Area of a Trapezoid =  \(\dfrac{({base_1+base_2})}{2}\times height\)

 

Solved Examples Using Measurement Formulas.

Example 1: 

Noah measured the sides of the square to 9 inches, what would be the area of this square?

Solution:   

To find: The area of a square.                   

The sides of the square = 9 inches (given)                   

Using Measurement Formulas,

Area of a Square=(side)2

Area of a Square=(9)2                               

= 81 m2

Answer: The area of a square is 81 m2.

Example 2: 

A trapezoidal park that has one base is of length 200 m and the other base is of length 100m also distance between the parallel bases is 50m. what is the area of a trapezoidal park?

Solution: 

To find: The area of a trapezoidal park.                 

The one base of the park = 200 m                 

The second base of the park = 100 m                 

The height of a park = 50 m                 

Using Measurement Formulas, 

Area of a Trapezoid = \(\dfrac{({base_1+base_2})}{2}\times height\)                                    

= \(\dfrac{({200+100})}{2}×50\)                                                      

= 150 × 50                         

= 7500 m2

Answer: The area of a trapezoidal park is 7500 m2.